

Integrating Graphic Designers into the
Embedded Design Cycle
A Crank Software White Paper

January 2010

Abstract
The last few years have seen a significant increase in the number of embedded
products containing an integrated graphical display. This provides consumers
with a much more visually appealing presentation of information but, at the
same time, introduces additional challenges for the embedded development
team. Product requirements now must also include details about the visual
presentation of the product, as well as the system level specifications. Often
the graphic design team is detached from the standard software development
team, leading to an “over the fence” style of development. Graphic artifacts
such as images and screen designs are handed off to software developers who,
in turn, must interpret them and attempt to make them fit into the rest of the
system design. The two teams are often quite disconnected leading to
inevitable integration problems. This white paper examines some of the
technical issues that graphic designers and system engineers need to be aware
of when designing a graphical product for the embedded market and look at
tools to facilitate the graphic design process for embedded systems by
assisting with integration and highlighting technical issues early in the
development cycle.

2 | P a g e

The user interface design dilemma

The design and development environment for embedded products has changed significantly

in the last ten years. The landscape of embedded devices has changed, due in large part by

the advances in consumer electronics; in particular, the cellular telephone market. Now, an

embedded device may still have a small form factor, but its system capabilities are richer

than the desktop pc’s of ten years ago [1]. Products that were originally using 8 and 16 bit

micro controllers have been widely replaced by cheaper and more powerful 32 bit

processors. Embedded devices that were once considered to be CPU and memory

constrained now have the ability to run much more sophisticated applications.

Along with this change in processor and memory capabilities comes a much greater

challenge: Evolving a product’s user interface (UI) or user experience.

Adapting a product to use a different processor or make better use of available memory to

improve performance falls within standard software engineering practices. There are a wide

variety of software tools, packages, and support libraries that can be used to facilitate the

migration of source code from one configuration to another.

The resources available to help update or adapt a product’s UI are not so bountiful. For

embedded products there are often two dilemmas. The first is how to create the initial UI.

For many embedded products, consumer or otherwise, UIs are being created where

previously there were none.

The second dilemma arises as the product evolves. What is the most effective way to evolve

a UI in sync with a product’s evolution? For those embedded products that provided user

feedback, it may have previously been in the form of a line oriented display or terminal

interface. These technologies are decidedly unsophisticated in their graphical complexity

providing a very functional interface to end users, but none of the richness that today’s

iPhone generation expect.

The “iPhone effect” [2] is the term that is being applied to describe the introduction of

display technologies to a myriad of products that had previously had only rudimentary UIs.

While there is a strong desire for rich interactive displays, it is the ever decreasing price of

LCD and touch screen displays, pushed by an ever-expanding cell phone market, which

3 | P a g e

allows this desire into reality. Adding an LCD, and the corresponding graphical user interface

(GUI), to a product has become an effective and inexpensive technique used to re-brand

older product lines. For new products, the addition of a graphical display technology and a

touch screen interface can provide a significant differentiator to a new product entering an

existing market.

The challenge remains; however, in the actual design and implementation of the GUI and its

integration into the rest of the product’s hardware and software development process.

A new term, user experience or UX, has emerged in product development circles in recent

years [3]. The intent of the term is to highlight the fact that a product’s UI is more than just

a set of assorted widgets on a screen. A product has an operational flow associated with it

that is the sum of the graphical interface, the presentation of the data, and the methods by

which the user interacts with the system. This constitutes the UX and when most UIs are

being designed, they are being designed with a particular UX in mind.

UX is one reason that the addition of a UI to a new product, or the updating of an existing

UI, becomes important to consider as part of a product’s software development process and

not considered as outside of the general engineering and product development cycle. A

graphical interface is more than simply a set of assorted widgets provided by a graphic

designer to a software developer.

Graphic design in the product development process

There are two popular models for integrating graphical content that make up a product’s UI

and; as such, the role of the graphic designer in a product’s development lifecycle.

The first model is to integrate the individual assets using standard graphical libraries and

widgets, and then use the image content from a graphic designer to skin the standard

controls. This technique usually has software developers implementing the UI, guided by

images reflecting static snapshots of how the UI should look as imagined by a graphic design

artist. Software developers are used to implementing the UI in this situation. The access to

the standard embedded graphical libraries is programmatic rather than declarative and the

tooling available, if any, is often targeted at software developers.

4 | P a g e

In this technique for implementing the UI, the graphic designer plays a passive role. They

are actively engaged initially to help form the product vision and design the overall UX, but

as the product moves from conception to production they play a reduced role in the hands-

on development of the product.

Often a project cannot afford to have a graphic designer who is dedicated to simply

supervising the implementation of a UI. In order for this technique to result in a product

that’s UI is a true reproduction of the original design, it requires constant validation of the

transformation that the software developers are performing. The software developer is

responsible for mapping the implementation of a static image to an interactive product and

in that process there are many areas where choices need to be made.

Unless the graphic designer is readily available, the software developer will use his or her

best judgment to implement functionality that is unspecified. The magnitude of these

decisions depends on the quality and detail of the specification.

If the designer is not a dedicated member of the development team and readily available,

then the alternative is that a UI specification must be created that is so detailed, that it in

fact represents a complete abstract implementation of the product. This is unrealistic for

most consumer products that have both small development teams and shortened time to

markets. Just as unproductive is having a graphic designer who cannot contribute to the

development and enhancement of a product as it is evolving without having to engage with

another resource, such as a software developer.

As a result, over the last few years as UIs have proliferated to more and more products,

product development teams are re-evaluating how their teams create, develop, deploy, and

maintain their UIs.

Integrate the technology

If throwing static UI designs “over the wall” to software developers to interpret and re-

implement is not an effective or scalable technique, what is its replacement? One approach

being applied is to move the technology being used by the graphic designers directly into

the embedded products, rather than spend the time and resources transforming UIs created

by graphic designers through a standard graphics/widget library.

5 | P a g e

Examples of technologies that are being pushed into embedded products in this fashion

include the integration of Adobe Flash, Microsoft Silverlight, or web-browser based UIs using

the WebKit.org or Mozilla.org engines.

Rather than delegating the graphic designer to a sideline supervisory role during product

development, this technique allows the designer to participate as an active member of the

development team. As user feedback is received or as requirements change, the designer

can adjust the UI elements quickly because they are working in a familiar environment. The

final UI has the potential of being much more aligned with the original vision, including the

subtle but important details that would normally be lost during the transformation by a

software developer.

The software development costs associated with this approach are not inconsequential

however. Many of the design tools used by graphic designers are designed for optimal use in

a ‘pre-production’ type of computing environment. The CPU and memory resource

consumption used by the environment is often an insignificant concern since they run on

desktop systems rather than embedded systems [4]. The effort required to port these

technologies to an embedded platform can be significant. Not only must the technology work

in a resource-constrained environment, but it may have to be additionally tuned for

performance, power management, or real-time behaviour with respect to other device

activities.

It is also a concern that in a fast moving technology area such as the consumer device space

that this effort may have to be undertaken for each change in operating system (OS) or CPU

architecture, significantly diminishing the cost benefits of ‘reclaiming’ a software developer to

concentrate on system development rather than UI generation.

Graphic design for embedded

Neither of these two approaches to developing and maintaining a product’s UI is ideal.

Neither alternative leverages the full capabilities of the graphic designer to make them an

active and productive member of the development team, while at the same time providing an

optimal technical solution targeted specifically at embedded and consumer products.

6 | P a g e

A large part of the challenge is the fragmentation of available tools and technologies. There

are few, if any, solutions that allow efficient end to end graphic designer participation in a

product’s development cycle. There are tools for content creation, tools for content

management and revision control, tools to help with product build automation, tools for

embedded system development and optimization, and tools to help with platform migration

and updates. A software developer can effectively produce code and have it flow easily

through to the end product and be confident that it will produce the desired effect. There is

no such confidence afforded to a graphic designer. In order to ensure that accuracy in the

original intent of the UI is replicated in the final product and is efficient, and that system

resources are properly appropriated, a laborious and time consuming path must be followed.

What should an ideal development environment/system/process provide to ease this burden

and improve the effectiveness of a graphic designer on a product development team? At a

minimum, the following points should be considered:

 The system will allow graphic designers to work in an environment that they find

familiar, and use the tools that they are comfortable with, and that make them most

effective. This means allowing development on desktop systems and allowing them

to use desktop graphic design packages, such as Adobe Photoshop, for content

development.

 The system will tie directly into the tools that the graphic designers are using such

that a graphic designer can transform their static UIs into “animated” UIs. This

could be implemented as an export format integrated into the existing tools or the

ability to import native content as produced by graphic design packages. Animation

of static graphic content could be facilitated through the use of standard naming

conventions for objects, such as using up/down name hints for button states.

 The system will highlight design errors that are specific to the performance and

operation of the UI in the embedded environment early in the design cycle so that

the graphic designer can adjust the design accordingly. Issues such as incorrect

image colour depth or the use of extraneous alpha channels can have a significant

performance effect on systems where computing resources are already being

stretched.

 In addition to warnings about performance impacting design decisions, the system

should allow the designer to simulate the UI of the device. This will model what is

frequently done when Adobe Flash is used as a mock-up tool; however, by making

7 | P a g e

the system aware of the limitations of an embedded environment a much more

representative simulation can be performed.

 The system will allow rapid and scriptable deployment of a UI design to a particular

embedded target configuration. Similar in nature to the compilation phase for source

code, this will provide a platform (CPU, OS, render and display configuration)

optimized solution using the same input design elements.

 A common model for isolating UI design changes from the underlying system and

vice versa is through the use of a Model-View-Controller (MVC) paradigm. The

environment for mapping behaviour to graphical elements should assist, and

potentially enforce, this separation.

 The system will facilitate collaborative development so that the UI can be developed

in parallel by multiple graphic developers and efficiently merged. The ability to

merge content, display changes, and resolve conflicts is a key function in distributed

software development teams.

 The sum of this functionality describes a very power environment that would

empower graphic designers to create innovative UIs and participate actively in

product development, aligning their involvement with the rest of a product’s

software development team.

 In addition to the productivity benefits of allowing the graphic designer to focus on

UI development for the final product, rather than an early prototype, the product will

benefit from having a more refined UI. Being continuously involved, the graphic

designer can more easily adjust the UI based on feedback of the overall UX that is

provided to the product development team, turning what would potentially be a long

feedback cycle into something much more aligned with today’s agile development

techniques.

Conclusion

More and more embedded products are including graphical display technologies, whether as

an evolution of existing designs or as a completely new approach to interfacing with the

user. To properly incorporate these displays into a product, graphic designers are being

employed to design rich UIs to appeal to today’s consumer.

Examining the most common techniques for incorporating UI design into the product

development process, the inclusion of a graphic designer to the team represents a significant

8 | P a g e

cost to the project. In order to eliminate this inefficiency, a paradigm shift is required in how

graphic designers and the UIs that they create are incorporated into the product

development process. In particular, this means developing an environment that aligns the

effort and workflow of a graphic designer with that of the software developers on the

product team.

The result of this alignment will not only be a more efficient development process, but the

release of products whose UIs are richer, more refined, and highly capable while still being

able to run on inexpensive hardware configurations.

References

If you are interested in reading more about this topic, try these websites.

[1] Computing Power

http://en.wikipedia.org/wiki/Moore's_law

http://digitalcontentproducer.com/dcc/revfeat/disappearing-desktop-0409/

[2] iPhone Effect

http://www.tomsguide.com/us/pictures-story/104-iPhone3GS-Winners-Losers.html

http://www.youtube.com/watch?v=_ZyznnuBZdY

[3] User Experience (UX)

http://en.wikipedia.org/wiki/User_experience_design

http://www.upassoc.org/upa_publications/user_experience/

http://mashable.com/2009/01/09/user-experience-design/

[4] Desktop Technologies Adapted for Embedded

http://www.cultofmac.com/adobe-gets-bitchy-about-flash-and-iphone/20378

http://arstechnica.com/microsoft/news/2009/09/latest-windows-embedded-ce-includes-

silverlight.ars

http://en.wikipedia.org/wiki/Moore's_law�
http://digitalcontentproducer.com/dcc/revfeat/disappearing-desktop-0409/�
http://www.tomsguide.com/us/pictures-story/104-iPhone3GS-Winners-Losers.html�
http://www.youtube.com/watch?v=_ZyznnuBZdY�
http://en.wikipedia.org/wiki/User_experience_design�
http://www.upassoc.org/upa_publications/user_experience/�
http://mashable.com/2009/01/09/user-experience-design/�
http://www.cultofmac.com/adobe-gets-bitchy-about-flash-and-iphone/20378�
http://arstechnica.com/microsoft/news/2009/09/latest-windows-embedded-ce-includes-silverlight.ars�
http://arstechnica.com/microsoft/news/2009/09/latest-windows-embedded-ce-includes-silverlight.ars�

9 | P a g e

About the author of this white paper

Thomas Fletcher, Vice President of Research & Development, works for Crank™ Software.

Thomas has worked in the field of real-time and embedded software development for more

than 10 years and is a frequent presenter at industry conferences. He is a technical subject

matter expert and thought leader on Embedded System Architecture and Design, Real-time

Performance Analysis, Power Management, and High Availability.

About Crank Software

Crank Software is an innovator in embedded UI solutions for consumer electronics,

automotive head units, and industrial devices. Compared to traditional electronic design

automation tools, Crank Software’s UI products and embedded development services enable

R&D teams to more quickly develop rich UIs for resource-constrained embedded devices like

in-car graphical displays and animated GPS systems.

This document is provided to you for informational purposes only. The information furnished in this document,
believed by Crank Software to be accurate as of the date of its publication, is subject to change without notice.
Crank Software Inc. assumes no responsibility for any errors or omissions in this document and shall have no
obligation to you as a result of having made this document available to you or based upon the information it
contains.

Crank and Storyboard are trademarks of Crank Software Inc.

© 2010, Crank Software Inc. All Rights Reserved.

CRANK SOFTWARE

Headquarters
Suite 200
700 March Road
Kanata, ON, Canada
K2K 2V9

Call
+1.613.595.1999

Email
info@cranksoftware.com

Visit on the web
Cranksoftware.com

Follow on twitter
@jasonpclarke

CRANK SOFTWARE

Headquarters
Suite 200
700 March Road
Kanata, ON, Canada
K2K 2V9

Call
+1.613.595.1999

Email
info@cranksoftware.com

Visit on the web
Cranksoftware.com

	Abstract
	The user interface design dilemma
	Graphic design in the product development process
	Integrate the technology
	Graphic design for embedded
	Conclusion
	References
	About the author of this white paper
	About Crank Software

